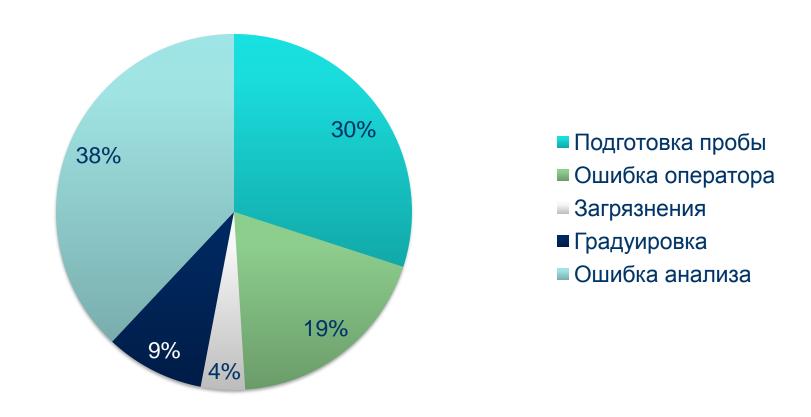


АВТОМАТИЗАЦИЯ МЕТОДОВ ЭКОЛОГИЧЕСКОГО КОНТРОЛЯ

РЕШЕНИЯ ДЛЯ ХРОМАТОГРАФИИ


Затраты времени в процессе анализа

R. E. Majors, An overview of sample preparation, LC-GC, 9, 16 (1991).

Источники аналитических ошибок

R. E. Majors, An overview of sample preparation, LC-GC, 9, 16 (1991).

- Большое число загрязнителей, не только в рамках методик аналитического контроля
- Высокая ответственность и достоверность результатов
- Высокая точность измерений
- Ограниченное финансирование
- Минимизация ошибок при выполнении измерений
- Повышение производительности и автоматизация
- Коммерческое использование аналитического оборудования

Выбор способа подготовки пробы

Подготовка пробы перед анализом выполняет 3 задачи: 1) Очистка от нежелательных примесей, 2) Концентрирование анализируемых веществ, 3) Перевод фазы в нужную фазу. Выбор метода пробоподготовки зависит от летучести вещества и анализируемой среды

Автоматизация подготовки пробы

- Ввод жидкой пробы после экстракции
- Термодесорбция
- Статический парофазный анализ
- Твердофазная микроэкстракция
- Динамический парофазный анализ

Автоматизация подготовки пробы

ввод жидкой пробы

Высокая надежность и исключительная простота

- Ввод пробы в 1 испаритель
- Простая установка на ГХ
- Лоток на 22 виалы (2мл, 18 проба + 4 сервис)
- Сходимость 0.3% (по площади, С10-С16 в октане)
- Шприцы объемом
 0.5; 1.0; 5.0; 10мкл
 - опция 100 мкл и 250 мкл
- Доступные режимы промывки шприца
 - сверху
 - из виалы
- Режимы отбора и ввода пробы
 - простой ввод
 - простой "сэндвич«
 - сэндвич с растворителем"
 - сэндвич с внутренним стандартом"

Опция: Промывка шприца сверху повышает надежность работы и увеличивает срок службы шприца

Дозатор ДАЖ-2M (3D)

Увеличение производительности и функциональных возможностей ГХ

- Лоток на 150 виал (2мл)
- Возможность ввода в 1 ... 3 испарителя
- Шприцы объемом от 0.5 до 250 мкл (10 мкл стандартный)
- 4 виалы для растворителя
- Простая процедура настройки координат дозатора
- Контроль правильности позиции ввода
- Аппаратные возможности по режимам отбора и ввода пробы, промывки шприца не уступают ДАЖ-2М

Опция: Промывка шприца сверху повышает надежность работы и увеличивает срок службы шприца

Микрошприц Автоматический SGE-Chromatec eVol XR

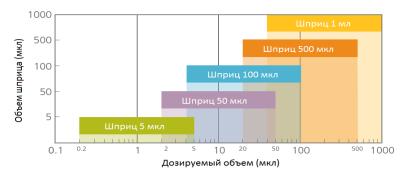
Применение

- Дозирование точно измеренного объема жидкости в диапазоне от 0.2 до 1000 мкл.
- Приготовление растворов калибровочных стандартов
- Приготовление и добавление внутреннего стандарта
- Точное дозирование водных и не-водных растворов
- Ввод пробы в газовый или жидкостный хроматограф
- Последовательное разбавление пробы или стандарта
- Ввод дериватизирующих агентов
- MEPS твердофазная микроэкстракция
- Микро-титрование
- Нанесение проб в ТСХ

Ключевые преимущества:

- Быстрая и точная работа с большим количеством проб малого объема.
- Экономия реактивов и времени
- Одинаковый результат вне зависимости от оператора!

Микрошприц Автоматический SGE-Chromatec eVol XR


Комплект поставки

- Автоматический микрошприц eVol (базовый блок)
- 3 сменных шприца eVol объемом 5мкл, 100 мкл, 1 мл.
- Подставка
- Универсальное зарядное устройство
- Руководство по эксплуатации
- Доступны по отдельному заказу сменные шприцы объемом 5, 50, 100, 500, 1000 мкл

Микрошприц автоматический является средством измерения в России



Диапазоны объемов шприцев eVol XCHANGE

ТЕРМОДЕСОРБЦИЯ

Термодесорбция – метод пробоподготовки при котором летучие органические соединения предварительно концентрируются в сорбционной трубке и затем извлекаются при нагревании трубки для ввода в хроматограф.

Области применения термодесорбции

- Анализ воздуха
- Тестирование ЛОС выделяющихся из материалов (строительные и отделочные материалы, товары народного потребления, упаковка, игрушки, отделка салонов автомобилей)
- Анализ ароматических соединений и пищевых добавок (пищевая продукция, парфюмы, косметика)
- Анализ высокотоксичных и отравляющих веществ
- Пожарно-техническая экспертиза

Анализируемые вещества

Высоколетучие органические соединения (ВЛОС)

Температура кипения от -100°C до 50°C

(С2-С5, ацетальдегид, винилхлорид, дихлорметан...)

Летучие органические соединения (ЛОС)

Температура кипения от 50°C до 250°C

(С6-С13, метилэтилкетон, толуол, фенол, хлорбензол...)

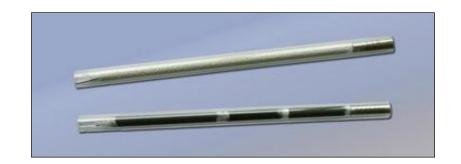
Среднелетучие органические соединения (СЛОС)

Температура кипения от 250°C до 400°C (С14 и выше, фталаты, ПАУ...)

Источник: Indoor air quality: organic pollutants. EURO reports and studies no 111. World Health Organization - Copenhagen, 1989.

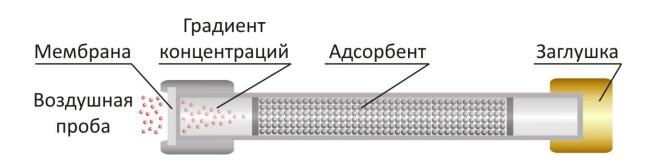
Способы отбора пробы

Газовые пипетки


Мешки

Канистры

Сорбционные трубки

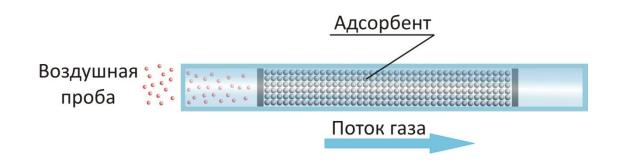


Пассивный отбор проб

 Масса диффундировавшего вещества m определяется первым законом диффузии Фика:

$$m = D \cdot \frac{A}{L} \cdot (C_{\infty} - C_0) \cdot t$$

- D коэффициент диффузии;
- А площадь сечения трубки;
- L расстояние до сорбента.



Активный отбор проб

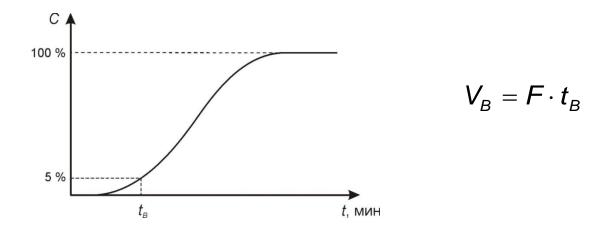
 Масса сорбированного вещества m определяется объемом пропущенного воздуха:

$$m = C \cdot V$$

- С концентрация вещества;
- V объем пробы.

• Однослойные сорбционные трубки

Используются для отбора определенной группы соединений


• Многослойные (комбинированные) сорбционные трубки

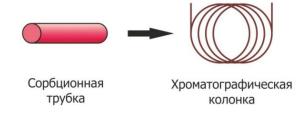
Используются для отбора широкого спектра соединений

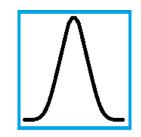
(М) «Проскок» пробы

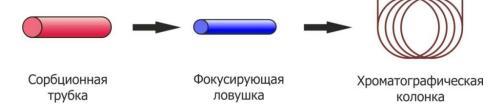
• Объем «проскока» — это объем газовой смеси, который может быть пропущен через сорбционную трубку до того, как содержание элюированного вещества достигнет уровня 5% его содержания в исходной смеси.

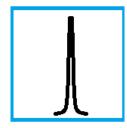
• Гарантированный объем пробы — рекомендуемый максимальный объем отбираемой пробы. Гарантированный объем пробы не должен превышать 70% объема «проскока».

Гарантированный объем пробы при отборе


Гарантированный объем пробы для сорбционных трубок (115 мм x 6 мм) при 20 °C


	Carbopack C	Tenax TA	Carbopack B	Chromosorb 106	Carbosieve SIII
Метан	0.0001	0.0006	0.0008	0.001	0.03
Этан	0.0007	0.002	0.003	0.005	0.6
Пропан	0.0017	0.015	0.03	0.09	2.6
Бутан	0.01	0.1	0.2	0.6	17
Пентан	0.06	0.5	1.1	5.6	160
Гексан	0.3	3.2	8	30	
Гептан	1.7	17	45	162.5	
Октан	7	80	750	1038	
Нонан	25	200	7000	7000	
Декан	125	390	80000	37000	
Ундекан	620	1260	200000		
Додекан	3000	5000			
Тридекан	9000	12500			
Тетрадекан	28000	30000			
Пентадекан	58000	57000			
Тип сорбента	Слабый		Средний		Сильный


Варианты термодесорбции


Одностадийная термодесорбция

Двухстадийная термодесорбция

Одностадийная

- Извлекаемая проба сразу переводится в колонку
- Конструктивная простота
- Низкая стоимость

Двухстадийная

- Извлекаемая проба фокусируется на ловушке в более узкую зону
- Благодаря более узким пикам достигается лучшая чувствительность
- Возможно применение многослойных трубок, ГХ-МС и Purge&Trap

Преимущества двухстадийной термодесорбции

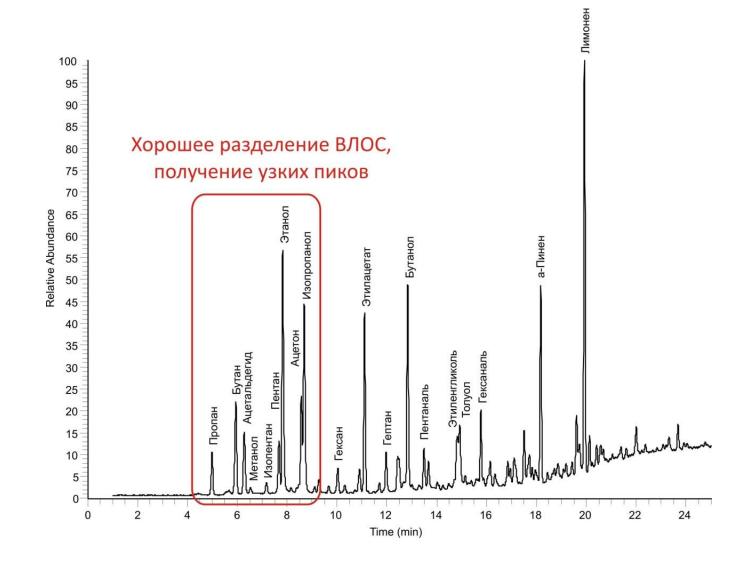
Пример

Анализ воздуха рабочей зоны

Сорбционная трубка: комбинированная

Колонка: BPX-Volatiles

 $(60m \times 0.32mm \times 1.8 \mu m)$


Температура колонки:

 40° С (5 мин) -8° С/мин -200° С

Газ-носитель: гелий, режим постоянного потока (1.3 мл/мин)

Режим сканирования МСД:

20-250 а.е.м.

Термодесорбер двухстадийный на 1 трубку

Возможности

- Простое подключение к хроматографу
- Проверка герметичности трубки перед десорбцией
- Инертные газовые линии
- Обогреваемые газовые магистрали
- Высокая скорость нагрева ловушки (до 2000°С/мин)
- Охлаждение ловушки элементами Пельтье
- Десорбция с ловушки осуществляется в направлении противоположном сорбции
- Кондиционирование трубки во время анализа отдельным газом
- Автоматическое управление расходами газов

Термодесорбер двухстадийный на 1 трубку

Характеристики

Сорбционные трубки

Длина 115 мм

Внешний диаметр 6 мм

Материал Стекло или нерж. сталь (SS316)

Аналитические характеристики

Температура сорбционной трубки от Токр.ср.+10 до 400 °С

Температура ловушки (нижняя) от -20 до 35 °C

Температура ловушки (верхняя) от 35 до 400 °C

Скорость нагрева ловушки до 2000 °C/мин

Температура крана от 150 до 250 °C

Температура переходной линии от 150 до 250 °C

Расход инертного газа от 0 до 200 мл/мин

СКО результатов анализа не более 2%

Двухстадийные термодесорберы

Термодесорбер ТДС-1 (на 1 трубку)

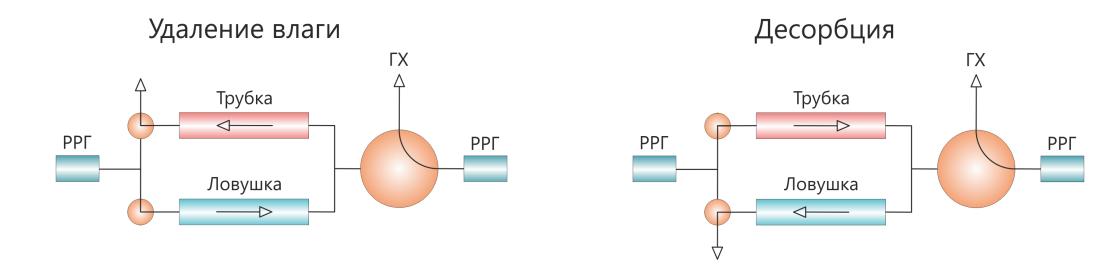
Термодесорбер Хроматэк TDA (автоматический)

Автоматический термодесорбер Хроматэк TDA

Начало серийного производства – 2018 год

- Сорбционные трубки: длина 3½" (89 мм) х О.Д. ¼" (6.4 мм) совместимость с термодесорберами мировых производителей
- Емкость лотка 50 трубок непрерывный анализ в течение суток*
- Встроенный сенсорный дисплей для простого использования с любыми ГХ и ГХ-МС
- Инертные трубки по каналу пробы (SilcoNert® 2000 и SS 316 activity tested)
- Температура по всему каналу пробы до 350°C
- Высокая скорость нагрева ловушки (до 2000°С/мин)
- Охлаждение ловушки элементами Пельтье
- Автоматическая проверка герметичности установки сорбционной трубки

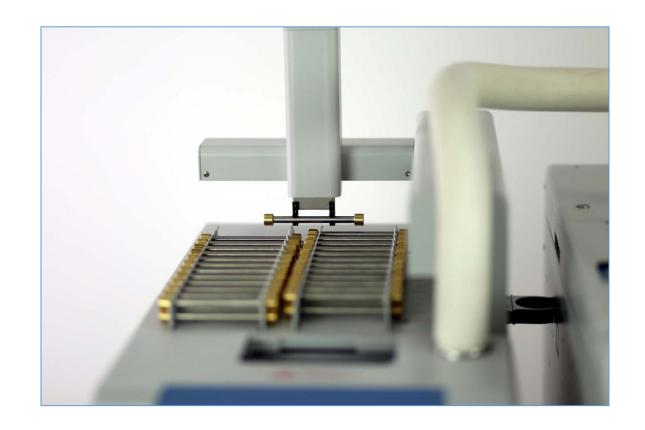
^{* -} при длительности анализа 30 мин



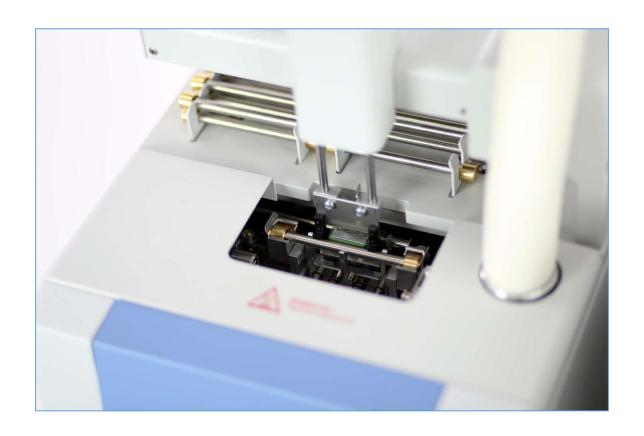
- Улучшенная система уплотнения сорбционной трубки автоматическое повторное уплотнение в случае негерметичности
- Удаление влаги из трубки перед десорбцией.
- Отдельный режим очистки ловушки загрязнения не попадают в колонку
- Режим проверки чистоты ловушки
- Режим кондиционирования трубок выполняется отдельным потоком газа
- Встроенные автоматические регуляторы потока (3 канала)
- Возможность деления потока при анализе высоких концентраций (повторный анализ отобранной пробы)
- Простое подключение к ГХ делает возможным использовать испаритель для других измерений

Система удаления влаги перед десорбцией

- Перед десорбцией трубка при комнатной температуре продувается инертным газом для удаления воздуха и влаги
- Обратное направление продувки влага не попадает в ловушку



Встроенный сенсорный дисплей, возможности управления как с помощью программы
 «Хроматэк Аналитик» в сочетании с ГХ, так и с помощью автономной программы (только ТДС)
 – это позволяет сочетать ТДС не только с ГХ Хроматэк-Кристалл, но и с любыми другими
 моделями ГХ и ГХ-МС



• 3D робот обеспечивает автоматическую загрузку образов из лотка вместимостью до 50 трубок. При длительности анализа 30 минут обеспечивается автономная работа в течение 24 часов

- Проба в сорбционной трубке герметично закрыта до начала анализа. Автоматический загрузчик снимает заглушки перед измерением.
- Размеры трубок совместимы с зарубежными моделями ТДС (1/4" OD x 89 mm)

Оборудование для термодесорбции

Термодесорберы:

- Одностадийный
- Двухстадийный
- Автоматический

Аспиратор Хроматэк ПВ-2

Десорбер

Сорбционные трубки

Устройство ввода в сорбционную трубку

Устройство для охлаждения сорбционных трубок

Аспиратор Хроматэк ПВ-2

- 2 независимых канала отбора пробы
- Журнал на 20 отборов пробы с записью даты и времени отбора, расхода и объема отобранного воздуха
- Удобны кейс для транспортирования
- Яркий OLED индикатор (отсутствие бликов при ярком освещении)
- Работа от встроенного аккумулятора, сети 220 В или бортовой сети автомобиля 12 В
- Автоматическое регулирование расхода (от 20 до 200 мл/мин)
- Высокая точность поддержания расхода
- Аспиратор является средством измерения в России

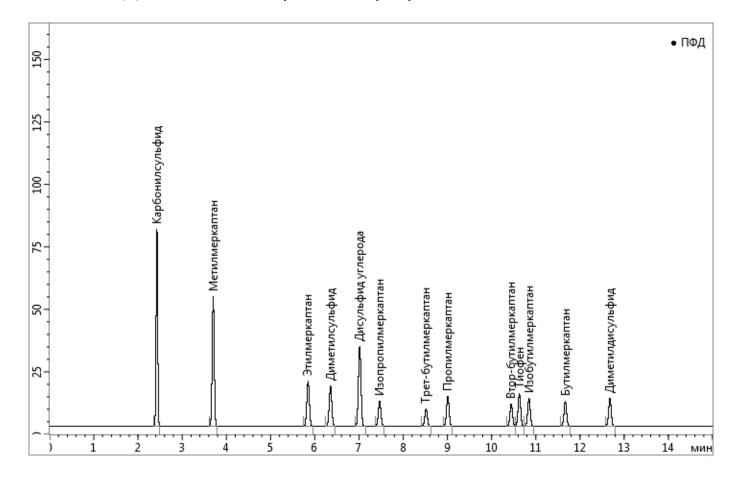
Десорбер 5.886.045

- Десорбер предназначен для кондиционирования сорбционных трубок в потоке инертного газа
- Модификации Десорбера: для трубок диаметром 5 мм, 6 мм и ¼"
- Количество одновременно кондиционируемых трубок: 10
- Рабочая температура: 50 400 °C
- Точность поддержания температуры: ±1°C
- Универсальный нагреватель Десорбера. При смене держателя может использоваться для трубок различного диаметра.

Устройство ввода в сорбционную трубку 5.885.023

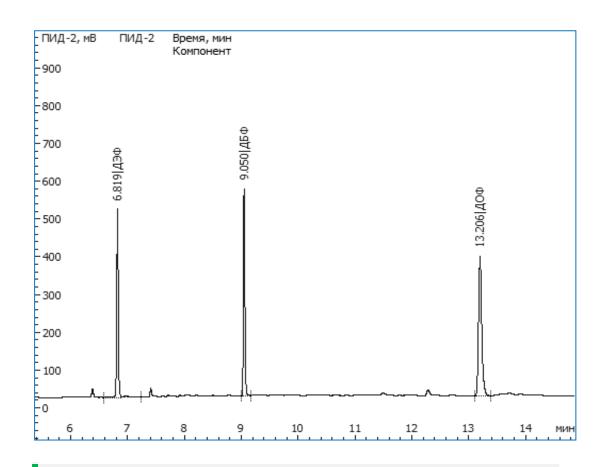
- Устройство ввода в сорбционную трубку предназначено для проведения градуировки хроматографа при работе с термодесорбером.
- Принцип градуировки заключается во введении микрошприцем определенного количества градуировочной жидкой смеси в сорбционную трубку и последующей отдувки растворителя.
- Подходит для трубок OD 5мм, 6мм, 6.4мм (¼")

Устройство для охлаждения сорбционных трубок


- Устройство обеспечивает охлаждение сорбционных трубок при отборе. Повышает безопасный объем при отборе и предотвращает проскок пробы.
- Обеспечивается стабильный отбор пробы вне зависимости от условий окружающей среды
- 2 канала для трубок.
- Разные исполнения для трубок 5мм, 6мм, ¼"
- Диапазон температуры при отборе от -30°C до +20°C.
- Питание: 12V от аккумулятора автомобиля или 220 V (стационарная сеть)

Анализ серосодержащих соединений в воздухе

• МВИ 88-16207-056-RA.RU.310657-2016. Методика измерений массовой концентрации серосодержащих соединений в атмосферном воздухе и воздухе рабочей зоны методом газовой хроматографии



Анализ фталатов (высококипящие соединения)

• МУК 4.1.3168-14. Газохроматографическое определение диметилфталата, диэтилфталата, дибутилфталата, бутилбензилфталата, бис(2-этилгексил)фталата и диоктилфталата в атмосферном воздухе, воздухе испытательной камеры и замкнутых помещений

Компонент	Темп. кип., °С	
Диэтилфталат	296	
Дибутилфталат	340	
Диоктилфталат	386	

Одностадийный термодесорбер обеспечивает полный перенос пробы из сорбционной трубки в хроматографическую колонку

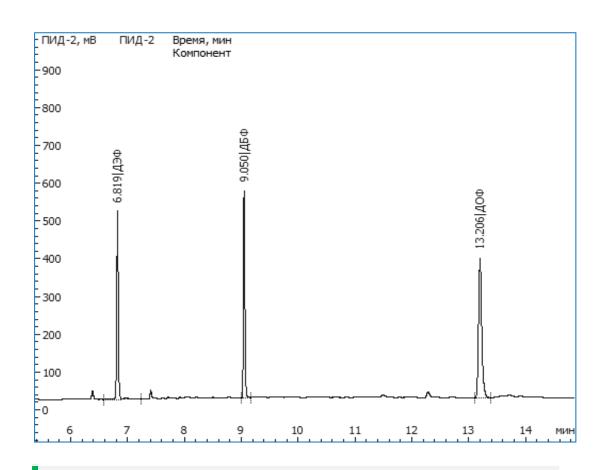
Анализ фталатов (высококипящие соединения)

Термодесорбер ТДС-1 (одностадийный)

Сорбент: Tenax TA

Температура десорбции 350°C

Колонки:


BPX-5 (30m x 0.53mm x 1.5 μ m)

BP-10 (30m x 0.53mm x 1.0 μ m)

Анализ производится на 2х колонках с разной полярностью, с двумя детекторами ПИД

Газ-носитель: азот

Компонент	Темп. кип., °С	
Диэтилфталат	296	
Дибутилфталат	340	
Диоктилфталат ###	340	

Одностадийный термодесорбер обеспечивает полный перенос пробы из сорбционной трубки в хроматографическую колонку

ГХ-МС Анализ ЛОС в воздухе

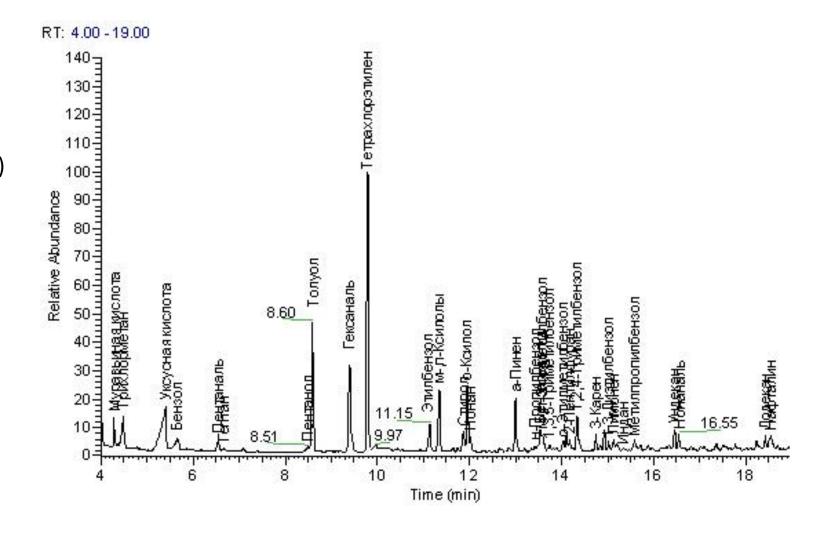
- ГОСТ Р ИСО 16017-1-2007. Воздух атмосферный, рабочей зоны и замкнутых помещений. Отбор проб летучих органических соединений при помощи сорбционной трубки с последующей термодесорбцией и газохроматографическим анализом на капиллярных колонках. Часть 1. Отбор проб методом прокачки
- ГОСТ Р ИСО 16017-2-2007. Воздух атмосферный, рабочей зоны и замкнутых помещений. Отбор проб летучих органических соединений при помощи сорбционной трубки с последующей термодесорбцией и газохроматографическим анализом на капиллярных колонках. Часть 2. Диффузионный метод отбора проб
- ГОСТ Р ИСО 16000-6-2007. Воздух замкнутых помещений. Часть 6. Определение летучих органических соединений в воздухе замкнутых помещений и испытательной камеры путем активного отбора проб на сорбент Tenax TA с последующей термической десорбцией и газохроматографическим анализом с использованием МСД/ПИД

ГХ-МС Анализ ЛОС в воздухе

Колонка:

CP Sil 8CB 30m x 0.32mm x 1 μm

40°C (4 мин) - 8°C/мин - 170°C (3 мин) - 12°C/мин - 220°C


Детектор: МСД

Скан. 20-350 (7 мин) – 50-350

Трубка: Tenax TA

Ловушка: Tenax TA

Объем воздуха: 1 л

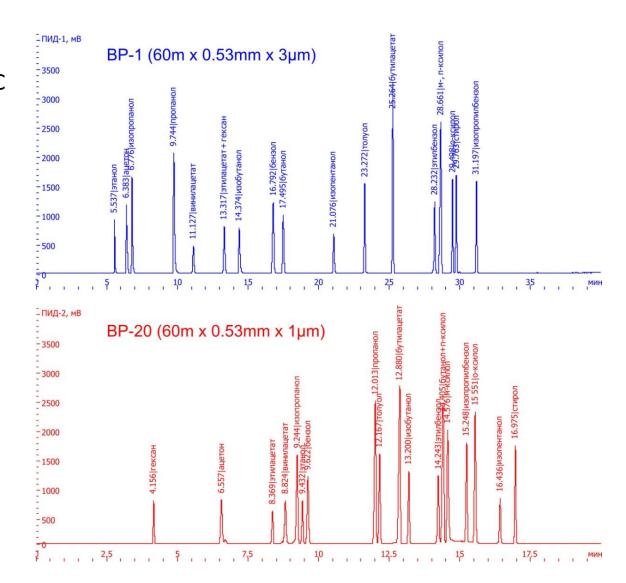
Анализ ЛОС на 2-х колонках разной полярности

• МУК 4.1.3167-14. Газохроматографическое определение гексана, гептана, бензола, толуола, этилбензола, м-, о-, п-ксилолов, изопропилбензола, н-пропилбензола, стирола, а-метилстирола, бензальдегида в атмосферном воздухе, воздухе испытательной камеры и замкнутых помещений

Анализ ЛОС на 2-х колонках разной полярности

Смесь ЛОС: 1 мкг/мкл

Температура колонки: 40° С (7 мин) $- 10^{\circ}$ С/мин $- 200^{\circ}$ С


Температура испарителя: 250°C

Температура детектора: 250°C

Газ-носитель: гелий, 40 кПа

Индексы удерживания

BP-1	BP-20
447	932
483	816
540	1028
599	893
600	600
651	948
759	1042
847	1131
878	1255
	447 483 540 599 600 651 759 847

ГАЗОВАЯ ЭКСТРАКЦИЯ (ПАРОФАЗНЫЙ АНАЛИЗ)

Области применения парофазного анализа

- Анализ летучих органических соединений (ЛОС) в воде, почве, твердых отходах, воздухе
- Анализ ЛОС в воздушных и водных вытяжках из полимерных материалов (игрушек, товаров народного потребления)
- Анализ упаковки и полимерных материалов (выделения ЛОС)
- Анализ остаточных растворителей в лекарственных формах
- Определение алкоголя и токсичных ЛОС в биологических жидкостях и тканях

Принцип метода

Газовая экстракция — экстракция веществ из жидкой или твердой матрицы (пробы) в газовую фазу с целью последующего отбора и анализа. Извлечение может производиться из воды, почвы, твердых материалов.

Парофазный анализ – анализ летучих органических соединений извлеченных в газовую фазу над пробой. Применяется при анализе ЛОС в воде.

• Статический

Проба отбирается из газовой фазы и вводится в хроматограф Воспроизводимость результатов зависит от точности поддержания температуры

• Динамический

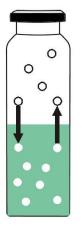
Газовая фаза и / или проба прокачиваются потоком инертного газа. Анализируемые вещества концентрируются на трубке с сорбентом и затем десорбируются при нагреве для ввода в хроматограф. Более высокая чувствительность по сравнению со статическим парофазным анализом

Статический парофазный анализ

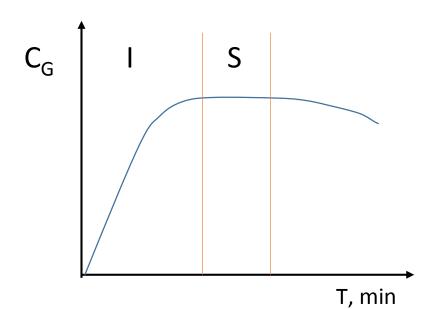
Установление равновесия «Жидкость – Газ»

С_G – концентрация вещества в газовой фазе

I – инкубация (установление равновесия)


S – оптимальное время пробоотбора

Факторы ускоряющие установление равновесия в водных растворах:

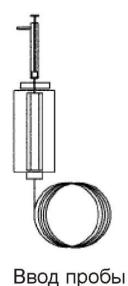

- Высаливание
- Встряхивание
- Природа веществ (более летучие и менее полярные вещества быстрее приходят к равновесию)

Техника статического парофазного анализа:

- Шприц
- «Кран-петля»

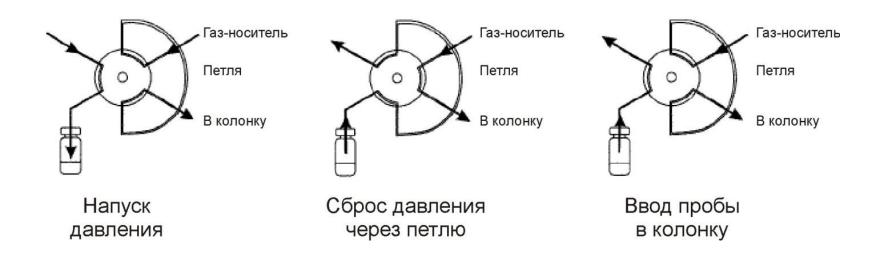
$$K = \frac{C_L}{C_G}$$

Схема парофазного анализа с использованием шприца


- Простая конструкция
- Используется газоплотный обогреваемый шприц
- Между отбором пробы и вводом минимальное время, чтобы избежать потери пробы
- Не используются растворители при пробоподготовке
- Простая автоматизация анализа

Установление равновесия

Отбор газовой фазы в шприц



в испаритель

Схема парофазного анализа «кран-петля»

- Фиксированный объем петли повышает воспроизводимость анализа
- Петля инертная, обогревается и продувается инертным газом
- Нет контакта пробы с атмосферой

Ручной дозатор равновесного пара ДРП-4

- Ручной ввод пробы, отбор пробы шприцем
- Вместимость термостата 4 виалы
- Шприц газоплотный объёмом 1 или 2,5мл
- Температура шприца от 35 до 150 °C
- Газоплотный шприц SGE Diamond HS
- Температура термостата проб от 35 до 150 °C
- Время термостатирования 1....999мин
- Интервал ввода 1....999мин
- Продувка шприца инертным газом 1....99мин
- Шейкер

Режим встряхивания Орбитальное Скорость встряхивания Быстро/Медленно Включение/выключение по времени с интервалами

Дозатор ДАЖ-2М (3D) парофазный

- Автоматическая подготовка и ввод пробы
- Отбор пробы шприцем
- Принцип работы 3-D робот
- Возможность ввода в 1...3 испарителя
- Испарители свободны для ручного ввода
- Использование высокотемпературных газоплотных шприцев SGE Diamond HS
- Лоток с виалами изолирован от температурного влияния хроматографа
- Повторный ввод с задержкой
- Подготовка следующей пробы во время анализа
- Опции по заказу: Жидкостный ввод, SPME
- Совместимость ПО «Хроматэк Аналитик», ПМ-3 электроника

Дозатор ДАЖ-2М (3D) парофазный

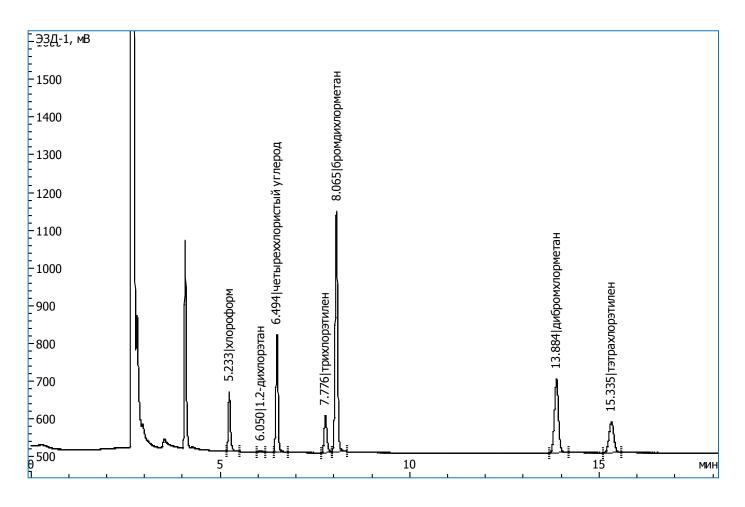
- Полная автоматизация анализа из лотка емкостью 30 виал (20мл)
- Вместимость термостата 4 виалы
- Шприцы объёмом 1мл или 2.5мл
- Температура шприца от t окр. +15 до 150 °C
- Температура термостата проб от t окр. +15 до 150 °C
- Программируемое время термостатирования проб
- Шейкер для встряхивания термостатируемых виал

Опции ввода жидких проб и SPME по заказу:

Дозатор легко перестраивается для жидкостного ввода с лотком в 60 виал (2 мл) или для выполнения твердофазной микроэкстракции (ТФМЭ) с лотком 26 виал (20 мл)

Устройство для продувки флаконов 5.883.067

- Продувка инертным газом флаконов перед проведением парофазного анализа для удаления ЛОС окружающего воздуха
- Механическое правление потоками
- Поток регулируется с помощью механического регулятора давления
- Вентиль для перекрывания потока
- Сменная игла устанавливается на гибкий трубопровод


Анализ галогенсодержащих углеводородов в воде

• ГОСТ 31951-2012. Вода питьевая. Определение содержания летучих галогенорганических соединений газожидкостной хроматографией

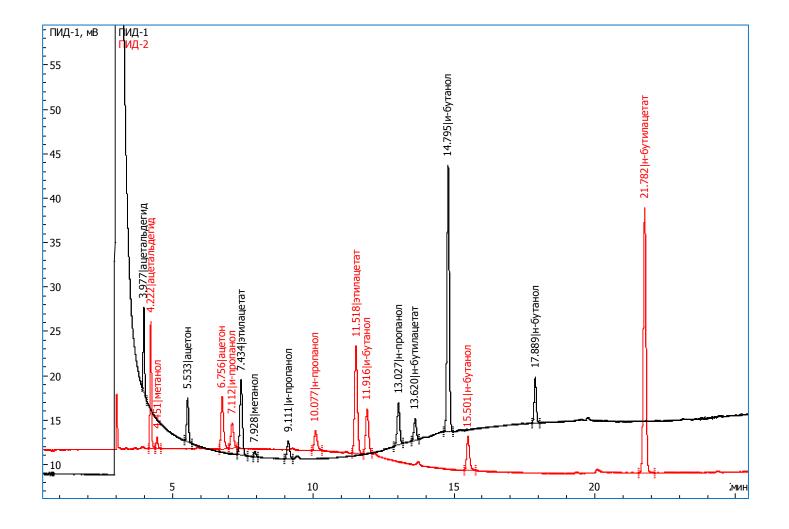
Колонка:

 $CR-5 30m \times 0.32mm \times 1 \mu m$

Детектор: ЭЗД

Анализ остаточных растворителей в полимерах

- МУК 4.1.3166-14. Газохроматографическое определение гексана, гептана, ацетальдегида, ацетона, метилацетата, этилацетата, метанола, изо-пропанола, акрилонитрила, нпропанола, нпропилацетата, бутилацетата, изобутанола, нпоутанола, бензола, толуола, этилбензола, м-, о-, п-ксилолов, изопропилбензола, стирола, а-метилстирола в воде водных вытяжках из материалов различного состава
- МУК 4.1.3170-14. Газохроматографическое определение ацетальдегида, ацетона, метилацетата, этилацетата, метанола, изо-пропанола, этанола, н-пропилацетата, н-пропанола, изобутилацетата, бутилацетата, изобутанола, н-бутанола в атмосферном воздухе, воздухе испытательной камеры и замкнутых помещений (методика использует предварительное поглощение анализируемых компонентов в воду)



Анализ остаточных растворителей в полимерах

Колонки:

CR-Vol 60m x 0.53mm x 3.0 μm BP-20 60m x 0.53mm x 1.0 μm

Детекторы: ПИД-1, ПИД-2 2 колонки устанавливаются в один испаритель

Анализ ЛОС в крови и моче

• **МВИ 88-16207-032-RA.RU.310657-2015**. Методика идентификации и измерения концентрации летучих токсических веществ в биологических жидкостях и тканях методом газожидкостной хроматографии на аппаратно-программном комплексе «Хроматэк-Кристалл»

Колонки:

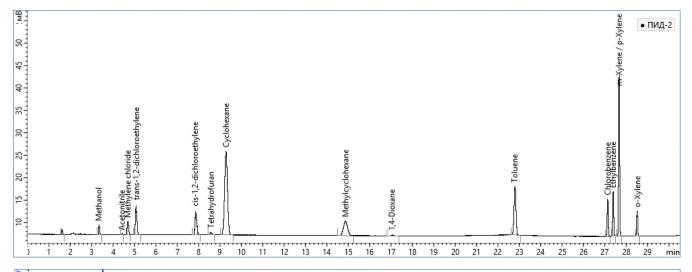
BPX-Volatiles 30m x 0.32mm x 1.8μm CR-WAXms 30m x 0.32mm x 0.5μm

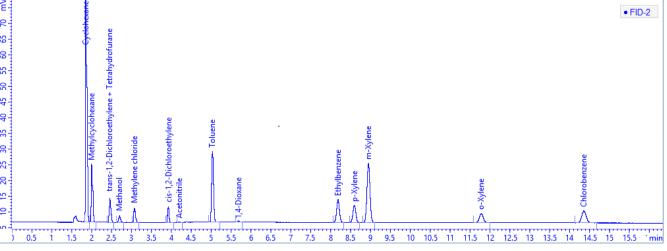
Детекторы: ПИД-1, ПИД-2

2 колонки устанавливаются в один

испаритель

Анализ Остаточных растворителей USP 467


 USP 467 и другие методы Фармакопеи – качественное и количественное определение остаточных растворителей в лекарственных формах и продуктах методом газовой хроматографии


Колонки:

BPX-Vol 30m x 0.32mm x 1.8 μm BP-20 30m x 0.32mm x 0.25 μm Детекторы: ПИД-1, ПИД-2 2 колонки устанавливаются в

один испаритель

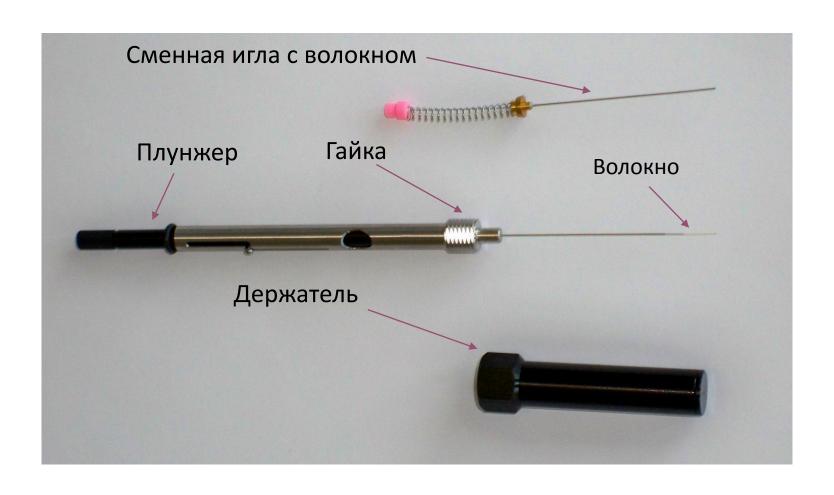
Хроматограф и ПО Хроматэк Аналитик удовлетворяют требованиям FDA 21 CFR часть 11. Выполняется квалификация оборудования и программного обеспечения (IQ/OQ/PQ)

ТВЕРДОФАЗНАЯ МИКРОЭКСТРАКЦИЯ (SPME)

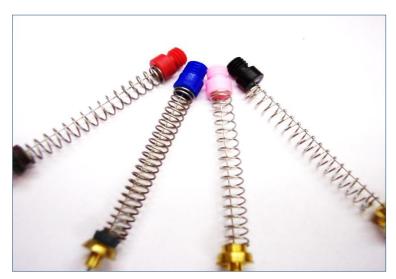
Твердофазная микроэкстаркция

- Метод твердофазной микроэкстракции разработали в 90-х годах прошлого века Януш Павлишин (Janusz Pawliszyn) с коллегами Университета Ватерлоо (Канада).
- Он изобрел эту технику, чтобы удовлетворить потребность в экспрессном методе, без использования растворителей, с возможностью отбора пробы в полевых условиях.

Твердофазная микроэкстаркция


- ТФМЭ техника адсорбции/десорбции без использования растворителей.
- Шприц содержит волокно для извлечения анализируемых компонентов из различных матриц.
- После экстракции волокно может транспортироваться к аналитическому оборудованию для проведения анализа.
- Волокно в шприце защищено от внешних воздействий.

Принцип метода ТФМЭ



Варианты волокна ТФМЭ

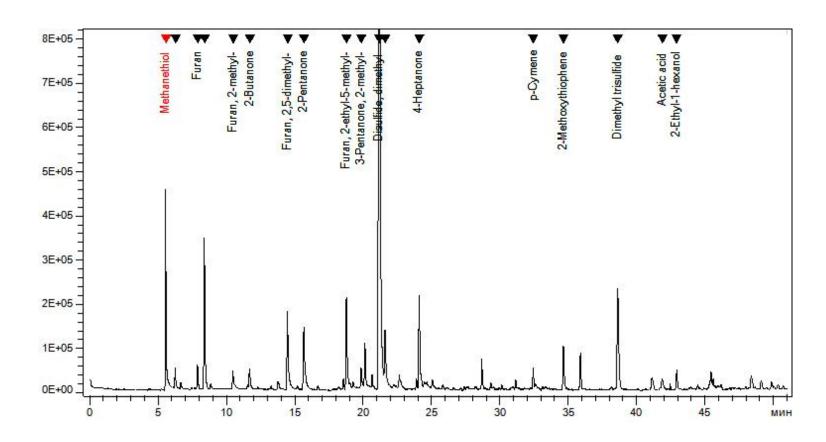
Волокна для ТФМЭ:

- PDMS
- PDMS/DVB
- Polyacrylate
- CAR/PDMS
- CW/DVB
- CW/TPR

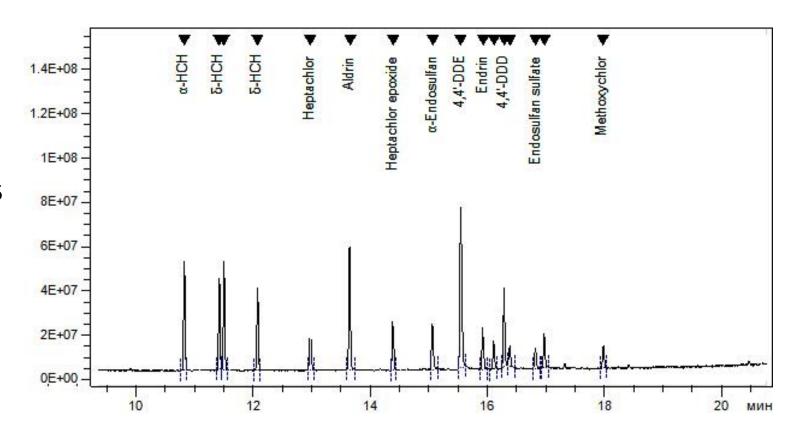
Фазы:

- Несвязанные
 - Стабильны с водными растворами и некоторыми полярными растворителями
 - Возможно небольшое набухание
 - Не используется с неполярными органическими растворителями
- Связанные
 - Стабильны со всеми органическими растворителями
 - Возможно небольшое набухание в неполярных растворителях
- Сшитые
 - Стабильны с водными растворами и большинством полярных растворителей
 - Стабильны с некоторыми неполярными растворителями, но возможно небольшое набухание

(H)

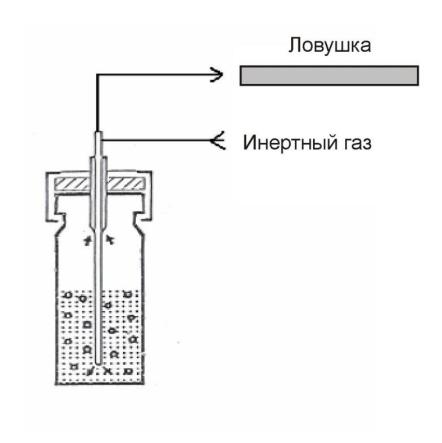

Области использования ТФМЭ

- Анализ пищевых продуктов
- Анализ лекарственных препаратов
- Клиническая диагностика
- Экологические анализы


Метод подходит как для анализа летучих органических соединений (исключая высоколетучие), так и для анализа труднолетучих (например, пестициды)

- Извлечение из паровой фазы
- Волокно Carboxen/PDMS
- Температура извлечения 40 °C
- Время извлечения 30 мин
- Колонка CR-WAX (60 m x 0.32 mm x 0.5 μm)

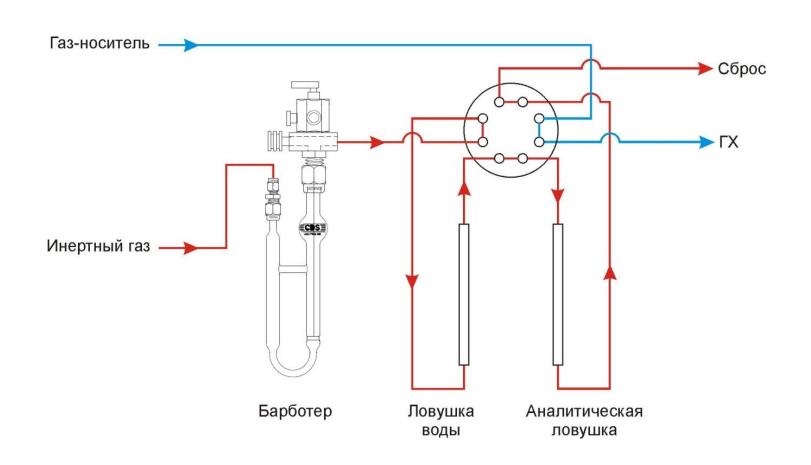
- Извлечение из жидкой фазы
- Волокно PDMS
- Температура извлечения 35 °C
- Время извлечения 20 мин
- Колонка CR-5 (30 m x 0.25 mm x 0.25 μm)



ДИНАМИЧЕСКАЯ ГАЗОВАЯ ЭКСТРАКЦИЯ (PURGE & TRAP)

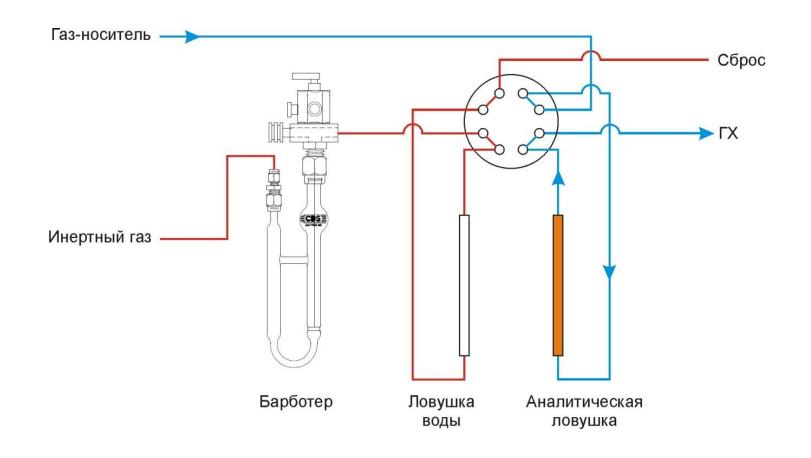
- Метод Р&Т используется для анализа летучих компонентов в воде
- При анализе твердых объектов (почва, полимеры, продукты питания) необходимы сменные виалы с термостатированием. В этом случае отсутствует влияние предыдущей пробы и достигается высокая степень извлечения

Области применения Purge & Trap


- Анализ летучих органических соединений (ЛОС) в воде, почве, твердых отходах, в особенности когда требуется высокая чувствительность (например, питьевая и бутилированная вода)
- Анализ упаковки и полимерных материалов (выделения ЛОС)
- Метод подходит для скриннингового анализа ГХ-МС

Принцип метода Purge & Trap

Этап барботирования



Летучие соединения извлекаются из пробы продуваемой потоком инертного газа. На выходе из сосуда с пробой продуваемый газ проходит через ловушку с сорбентом, анализируемые компоненты улавливаются в ловушке.

Принцип метода Purge & Trap

Этап десорбции

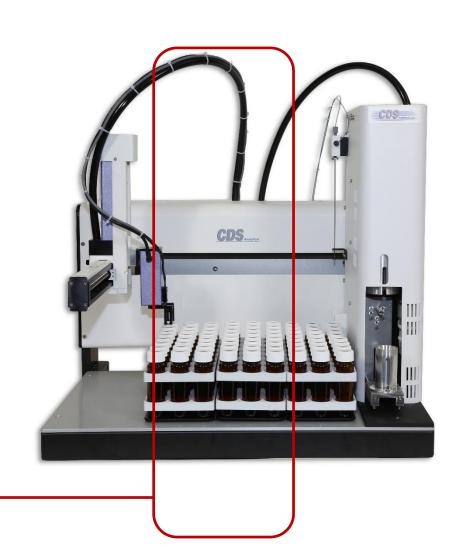
После поворота крана изменяется направление потоков, ловушка нагревается, анализируемые компоненты десорбируются из системы и переносятся в хроматографическую колонку

Концентратор CDS 7000E Purge & Trap

- Объем барботеров 5 или 25 мл
- Концентратор не перекрывает испаритель, возможен ввод жидких проб в хроматографическую колонку
- Инертные газовые трубопроводы SilcoNert
- Датчик пены
- Ловушка влаги
- Продувка барботера инертным газом перед вводом пробы воды
- Подготовка следующей пробы при проведении анализа на газовом хроматографе
- Электронное регулирование расхода газа (опция)
- Термостатирование пробы при газовой экстракции (опция)

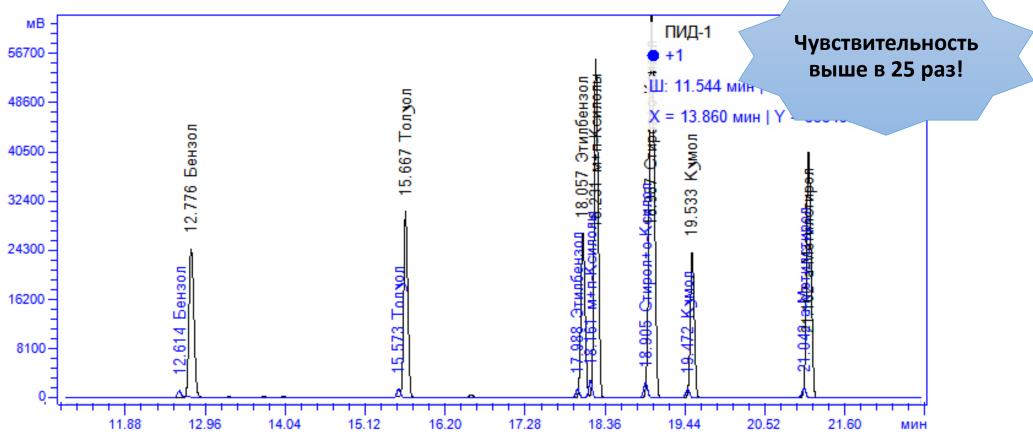
Автосамплер CDS 7350 для анализа воды

- Автосамплер обеспечивает перенос пробы воды в концентратор P&T CDS 7000 для анализа
- Лоток 72 виалы объемом 40 мл
- Добавление внутреннего стандарта
- Объем петли на 5 или 25 мл
- Инертные газовые трубки РЕЕК
- Программирование режимов промывки и продувки
- Программирование холостого анализа
- Многократный отбор


Автосамплер CDS 7450 для анализа воды и почвы

В дополнение к функциям CDS 7350 блок для извлечения паровой фазы из почвы:

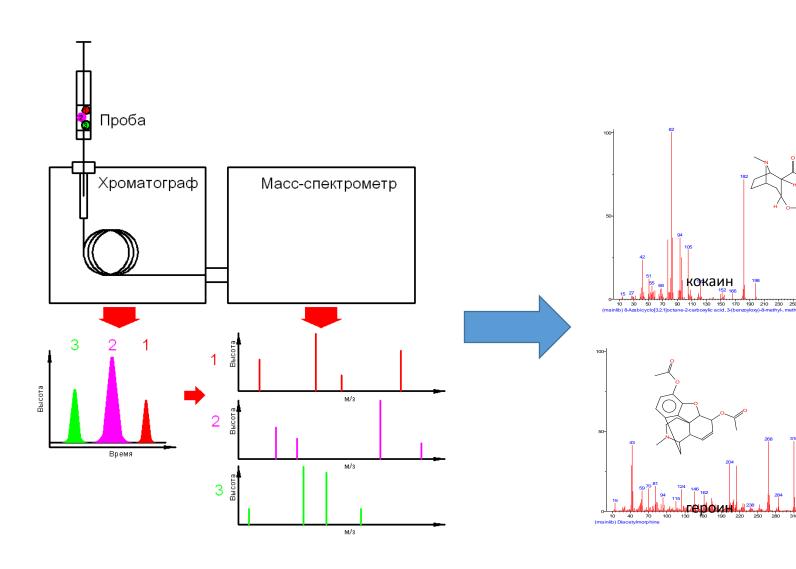
- (1) Динамический парофазный анализ твердых образцов
- (2) Нагрев до 80 градусов
- (3) Магнитная мешалка
- Добавление воды к твердому образцу


Виала переносится в обогреваемый блок для извлечения ЛОС

Сравнение чувствительности

- Синий статический парофазный анализа
- Черный динамический парофазный анализ

Высокая чувствительность метода Purge&Trap делает его незаменимым инструментом при ГX-MC исследованиях воды и почвы


Хромато-масс-спектрометрия

- Универсальный инструмент для разнообразных применений
- Высокая достоверность идентификации при анализе сложных образцов
- Высокая чувствительность в режиме SIM
- Идентификация неизвестных загрязнителей по библиотекам масс-спектров
- Неразделенные пики не проблема

Хромато-масс-спектрометрия

Режим TIC:

Чувствительность сравнима с ПИД Идентификация по библиотекам масс-спектров

Режим SIM:

Анализ по отдельно выбранным ионам Высокая чувствительность и

Высокая чувствительность и селективность

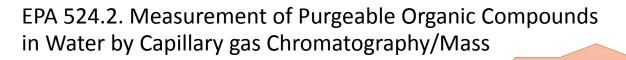
Анализ ЛОС в воде

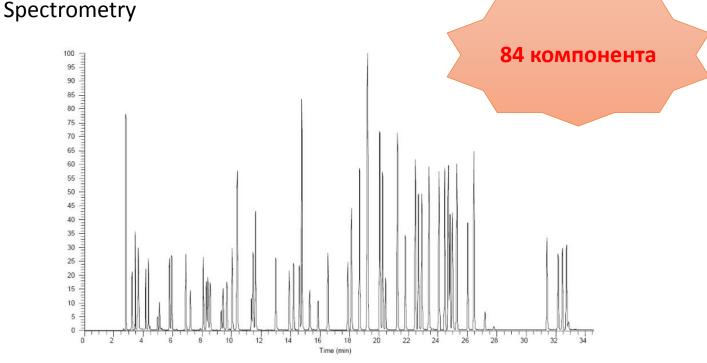
МУК 4.1.649-96. Методические указания по хромато-масс-спектрометрическому определению

летучих органических веществ в воде

RT: 5.00 - 20.00	17 компонентов
90-	
80-	
Relative Abundance	
## 40- 20- 30-	
10-	
0 10 12 14 16 Time (min)	18 20

	Время удерживания, мин	Компонент
1	5,38	Ацетон
2	5,59	Дихлорметан
3	6,44	1,2-Дихлорэтилен
4	9,75	Хлороформ
5	10,66	1,2-Дихлорэтан
6	11,52	Бензол
7	11,71	Тетрахлорметан
8	12,68	Дихлорбромметан
9	12,72	Трихлорэтилен
10	14,85	Толуол
11	15,38	Дибромхлорметан
12	16,29	Тетрахлорэтилен
13	17,65	Этилбензол
14	17,89	м-Ксилол
15	18,02	Бромоформ
16	18,58	о-Ксилол
17	18,41	Стирол


Д Анализ ЛОС в сточных водах


ПНД Ф 14.1:2:144-98 Методика выполнения измерений массовой концентрации органических веществ (18 соединений) в сточных водах газохроматографическим методом с использованием газовой экстракции и универсального многоразового пробоотборника

- Диапазон определяемых концентраций: от 0.01 до 5.0 мг/дм3
- Определяемые компоненты: ацетальдегид, ацетонитрил, бутилацетат, бутиловый спирт, гексан, декан, изопропилбензол, изопропиловый спирт, кротоновый альдегид, масляный альдегид, метилвинилпиридин, метилэтилпиридин, а-метилстирол, стирол, толуол, фенол, этилацетат, 2-этил-1-гексанол

Анализ летучих органических соединений в воде

Колонка: DB-VRX, 60m x 0.32mm x 1.8µm

40°C (5 мин) - 5°C/мин - 240°C Детектор: МСД, Скан. 35-300 1 - Дихлордифторметан

2 - Хлорметан

3 - Винилхлорид4 - Бромметан

5 - Хлорэтан

6 - Трихлорфторметан

7 - Ацетон

8 - Диэтиловый эфир

9 - 1,1-Дихлорэтен

10 - Йодометан

11 - Акрилонитрил

12 - Дихлорметан 13 - 3-Хлорпропен

14 - Сероуглерод

15 - транс-1.2-Дихлорэтен

16 - Метил-трет-бутиловый эфир

17 - 1,1-Дихлорэтан

18 - Пропионитрил

19 - Метилэтилкетон

20 - Метакрилонитрил

21 - цис-1,2-Дихлорэтен

22 - Бромхлорметан

23 - Хлороформ

24 - 2,2-Дихлорпропан

25 - Метилакрилат

26 - Тетрагидрофуран

27 - 1,2-Дихлорэтан

28 - 1,1,1-Трихлорэтан

29 - 1-Хлорбутан

30 - Хлорацетонитрил

31 - 1,1-Дихлорпропен

32 - Бензол

33 - Четыреххлористый углерод

34 - Дибромметан

35 - 1,2-Дихлорпропан

36 - Трихлорэтен

37 - Бромдихлорметан

38 - 2-Нитропропан

39 - Метилметакрилат

40 - 1,1-Дихлор-2-пропанон

41 - цис-1,3-Дихлорпропен

42 - 4-Метил-2-пентанон

43 - транс-1,3-Дихлорпропен

44 - 1,1,2-Трихлорэтан

45 — Толуол

46 - 1.3-Дихлорпропан

47 - Этилметакрилат

48 - 2-Гексанон

49 - транс-1,4-Дихлор-2-бутен

50 - Пентахлорэтан

51 - Гексахлорэтан

52 - Нитробензол

53 - Дибромхлорметан

54 - 1,2-Дибромэтан

55 - Тетрахлорэтен

56 - 1,1,1,2-Тетрахлорэтан

57 - Хлорбензол

58 - Этилбензол

59 - Бромоформ

60 - м-Ксилол

61 - п-Ксилол

62 - Стирол

12 - Стирол

63 - 1,1,2,2-Тетрахлорэтан

64 - о-Ксилол

65 - 1,2,3-Трихлорпропан

66 - Изопропилбензол

67 - Бромбензол

68 - н-Пропилбензол

69 - 2-Хлортолуол

70 - 4-Хлортолуол

71 - 1,3,5-Триметилбензол

72 - трет-Бутилбензол

72 - трет-бутилоензол

73 - 1,2,4-Триметилбензол

74 - втор-Бутилбензол

75 - 1,3-Дихлорбензол

76 - 1,4-Дихлорбензол

77 - п-Изопропилтолуол

78 - 1,2-Дихлорбензол

79 - н-Бутилбензол

80 - 1,2-Дибром-3-хлорпропан

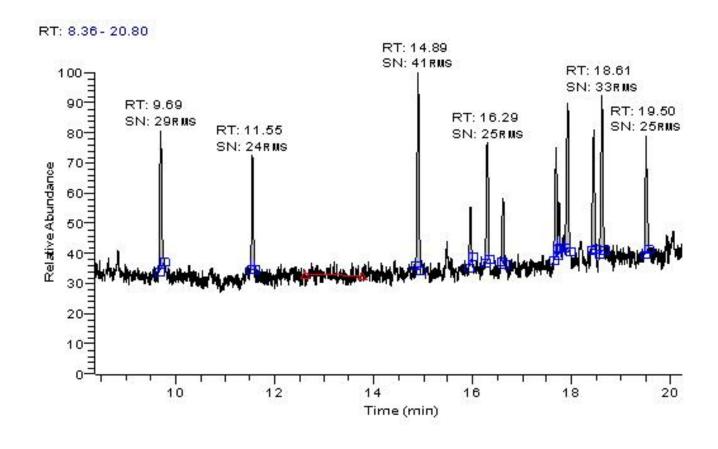
81 - 1,2,4-Трихлорбензол

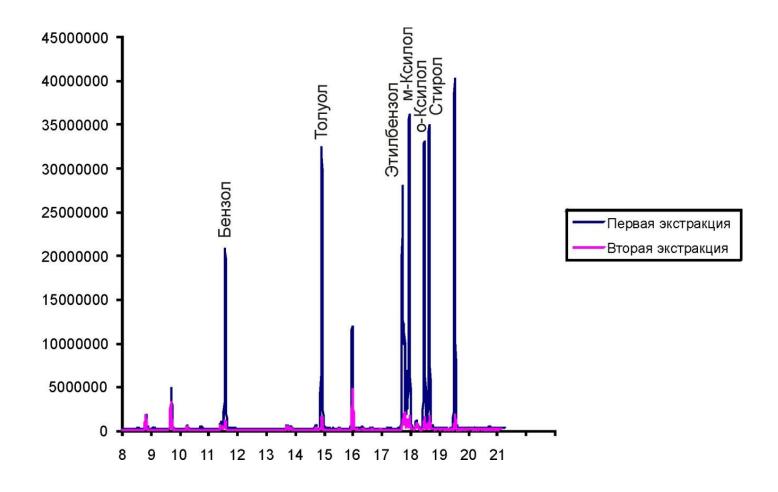
82 - Нафталин

83 - Гексахлорбутадиен

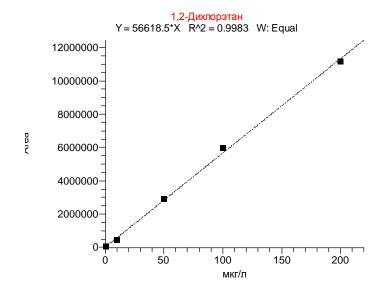
84 - 1,2,3-Трихлорбензол

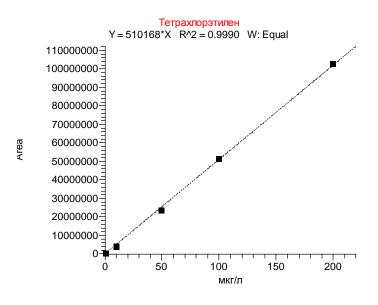
Анализ летучих органических соединений в воде

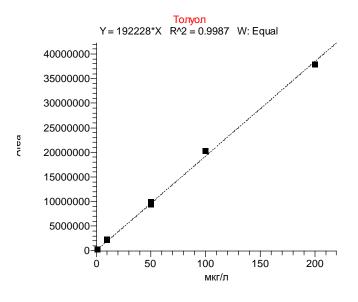

ISO 15680:2003 Water quality - Gas-chromatographic determination of a number of monocyclic aromatic hydrocarbons, naphthalene and several chlorinated compounds using purge-and-trap and thermal desorption



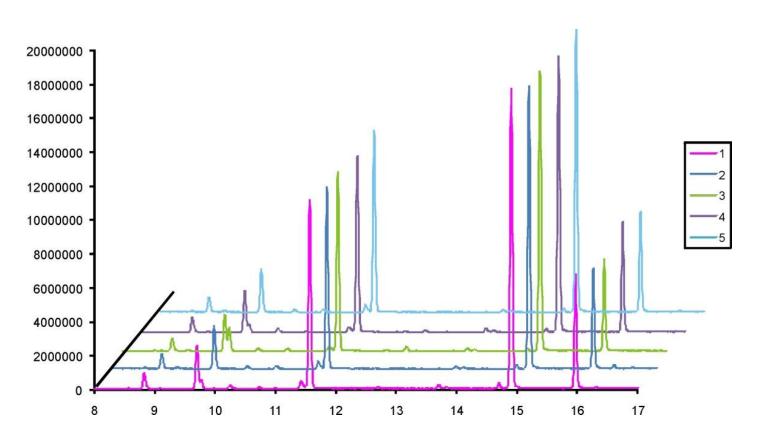
Минимальная определяемая концентрация


Анализ ЛОС в воде с концентрацией 0,2 мкг/л



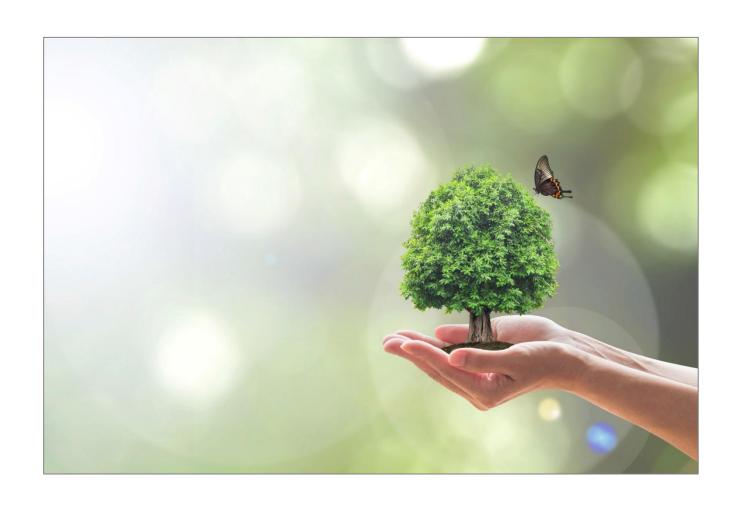

Степень извлечения ароматических углеводородов > 97%

Коэффициенты корреляции 0,998 – 0,999



Сходимость результатов

Компонент	СКО, %
Бензол	0,65
Толуол	0,86
Этилбензол	1,30
м-Ксилол	0,89
о-Ксилол	1,59
Стирол	1,23


CKO < 2%

Всегда Ваш,

Хроматэк

www.chromatec.ru

